Novel gas exchange analysis in COVID-19 lung disease

Mike Hughes

National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK.

Corresponding author: Mike Hughes (mike.hughes@imperial.ac.uk)

blood (common to all units), and λ is the blood solubility of gas_x (essentially, for O₂ and CO₂, λ is the tangent to the blood dissociation curve $\Delta C/\Delta P$, where C is O₂ or CO₂ content (mL·mL⁻¹) and P is partial pressure at a particular instantaneous point on the curve). WAGNER *et al.* [4] used this relationship (equation 1) in their multiple inert gas elimination technique (MIGET) in which six inert gases of different solubilities (λ range of 10⁴-fold) were infused until a steady state was achieved; from their individual retention (P_A/P_{∇}) and excretion (P_E/P_{∇}), where \overline{E} is mixed expired gas, \dot{V}_A or \dot{Q} could be plotted against \dot{V}_A/\dot{Q} for a lung of 50 notional compartments.

In the more recent paper, WAGNER *et al.* [3] had a two compartment model, either 1) 50% of blood flow (\dot{Q}) shunted (zero \dot{V}_A/\dot{Q}), and 50% with normal ventilation and \dot{V}_A/\dot{Q} ; or 2) 50% of ventilation (\dot{V}_A) unperfused with \dot{V}_A/\dot{Q} of infinity, and 50% with normal blood flow and \dot{V}_A/\dot{Q} . The authors showed (in their figure 2) that the relative \bar{A} -a or a- \bar{A} partial pressure gradient was about ×3 greater for O₂ *versus* CO₂ in the shunt model, and ×1.7 greater for CO₂ *versus* O₂ in the dead space model, *i.e.* shunt is more dominated by $\bar{A}aP_{O_2}$ and alveolar dead space by $a\bar{A}P_{CO_2}$. They attributed this to the approximately 10-fold greater solubility (λ) of CO₂ in blood *versus* O₂ over the physiological range of partial pressures. Nevertheless, in their figure 3, where they had models with a mixture of shunt and dead space (in essence, three compartments), the value of AaP_{O_2} was influenced by the value of aAP_{CO_2} and *vice versa*. Thus, it becomes essential to measure the gradient for CO₂ as well as O₂ to apportion shunt and dead space correctly when both are present. This is where the analysis of WAGNER *et al.* [3] differs from that of RILEY and COURNAND [2].

The ideal alveolar air analysis of RILEY and COURNAND [2]

Rapid response O_2 and CO_2 gas analysers were not available in 1949, and there were doubts about the accuracy of end-expired samples for defining mean alveolar P_{O_2} and P_{CO_2} . RILEY and COURNAND [2] found an ingenious solution, using the P_{O_2} – P_{CO_2} diagram of FENN *et al.* [5], and proposed that in the steady state the ratio of oxygen uptake to CO_2 production (the respiratory quotient (RQ) or respiratory exchange ratio (R)), normally around 0.8, must be the same for the lung as for the body as a whole (figure 1). Thus, mean P_{AO_2} and P_{ACO_2} must lie along a line, in a plot of P_{CO_2} (*y*-axis) against P_{O_2} (*x*-axis), with a slope (P_{CO_2}/P_{O_2}) of 0.8, starting from the inspired point ($P_{O_2} \sim 150$ and $P_{CO_2} = 0$ mmHg). Similarly, mean capillary (c) P_{O_2} and P_{CO_2} , in partial pressure equilibrium with mean alveolar gas tensions, must lie along a line starting from the mixed venous point (\overline{v}), with a slope (which, in terms of concentrations, is linear) for the blood content ratios ($C_{VCO_2} - C_{CCO_2}$)/($C_{CO_2} - C_{VO_2}$) also equalling 0.8. When the slope of blood content ratio line of 0.8 is re-expressed in terms of P_{O_2} (the blood R line in figure 1), the intersection of

FIGURE 1 Graphical analysis of the calculation of ideal alveolar air (A_i; ideal point) modified from RILEY and COURNAND [2]. Blood or gas carbon dioxide tension (P_{CO_2}) is plotted against oxygen tension (P_{O_2}) (in mmHg) with the gas inspired (I; air) set at P_{O_2} 150 and P_{CO_2} 0 mmHg (see text). Curved line joining point I to point \bar{v} (the $P_{CO_2}-P_{O_2}$ of mixed venous blood) is the \dot{V}_A/\dot{Q} line, reflecting all possible alveolar P_{CO_2} and P_{O_2} values for \dot{V}_A/\dot{Q} ratios from zero (at \bar{v}) to infinity (at I) at a lung and body respiratory quotient (RQ or R) of 0.8. Gas and blood R lines, constructed for R=0.8, intersect at the "ideal" point. "art" is the $P_{CO_2}-P_{O_2}$ of mixed arterial blood in a healthy subject, "c" is the composition of mixed blood leaving alveolar capillaries (arterial minus anatomic shunt), alv of mixed alveolar gas, and \bar{E}_{ads} of mixed expired air corrected for apparatus dead space.

blood and gas R lines defines the alveolar P_{O_2} and P_{CO_2} for an ideal lung with a single \dot{V}_A/\dot{Q} ratio (~0.86) appropriate for an RQ (or R) of 0.8. The ideal alveolar air concept is more easily understood graphically, as portrayed in figure 1.

Defining the "ideal" point in practice, and dead space to tidal volume ratio (V_D/V_T)

The blood RQ line (figure 1) becomes flat as it approaches the gas R line. Therefore, RILEY and COURNAND [2] proposed, reasonably, that the arterial P_{CO_2} , which is positioned on the flat part of the curve, could define the intersection of the gas and blood R lines and, thus, the ideal alveolar P_{O_2} and P_{CO_2} . The ideal alveolar P_{O_2} could be calculated (approximately) as inspired P_{O_2} minus P_{aCO_2} divided by the gas R slope (0.8). This way of calculating the Aa P_{O_2} gradient has been used in respiratory physiology and medicine for the past 72 years!

Dead space as a fraction of tidal volume (V_D/V_T) is calculated from the gas R line (figure 1) as the ratio $(A_i - \overline{E}_{ads})/(A_i - I)$, or in terms of P_{CO_2} as $(P_{aCO_2} - P_{\overline{E}CO_2})/(P_{aCO_2} - P_{ICO_2})$; since P_{ICO_2} is zero, this simplifies to $(P_{aCO_2} - P_{\overline{E}CO_2})/P_{aCO_2}$. In the analysis of WAGNER *et al.* [3], alveolar dead space equals $(P_{aCO_2} - P_{\overline{A}CO_2})/P_{aCO_2}$, where \overline{A} equals alv in figure 1.

Why the "ideal" point and V_D/V_T are not the optimal solutions

In lung disease, P_{aCO_2} cannot be relied on to predict mixed or mean P_{AO_2} . In intrapulmonary shunt, P_{aCO_2} will be greater than P_{AO_2} , by 2.3 mmHg for a 30% shunt alone and by 9.0 mmHg for 30% alveolar dead space alone (table 1); thus, the ideal alveolar air analysis [2] will underestimate the true mixed or mean alveolar to arterial (\overline{AaP}_{O_2}) gradient. Although 2.3 mmHg \overline{aAP}_{CO_2} gradient (A in table 1) is not a big difference (and the effect on the shunt calculation would be small), the error would be much greater if there was a combination of increased shunt and increased dead space (table 1). Figure 4 in WAGNER *et al.* [3] shows a complex interaction between the \overline{AaP}_{O_2} and the \overline{aAP}_{CO_2} gradients, which means that both need to be defined for intrapulmonary shunt and dead space fractions to be measured accurately.

The V_D/V_T of RILEY and COURNAND [2] includes the anatomic dead space (~33% of total in a resting healthy subject); this significantly reduces its sensitivity.

The \overline{AaP}_{O_2} and \overline{AP}_{CO_2} gradients in table 1 show that shunt and dead space affect O_2 and CO_2 exchange independently, differing from the RILEY and COURNAND [2] analysis portrayed in figure 1. For example, in A there is a small \overline{AP}_{CO_2} gradient even when there is no alveolar dead space, and in B an \overline{AaP}_{O_2} gradient exists in the presence of zero shunt. In C and D, the \overline{AaP}_{O_2} gradients are the same despite a 14% difference in shunt, but there is a 20% difference in dead space. There are similar \overline{AP}_{CO_2} gradients in D and E, despite different alveolar dead spaces, because of a 39% difference in shunt. In E, a substantial \overline{AaP}_{O_2} exists (26 mmHg) with a small shunt (5%) because there is a significant dead space (23%). In other words, \overline{AaP}_{O_2} is not an accurate reflection of intrapulmonary shunt (formerly called "venous admixture") and \overline{AP}_{CO_2} is not a true representation of alveolar dead space.

The analysis of WAGNER et al. [3]: practical matters

Computerisation

The older, graphical approach cannot be expected to cope with the complexity of the blood dissociation curves for O_2 and CO_2 , and their interaction. Body temperature, hydrogen ion concentration, haemoglobin and P50 all need to be taken into account. With the advent of digital computers, and expert programming,

TABLE 1 Mean (or mixed) alveolar to arterial gradients for oxygen ($\bar{A}aP_{O_2}$) and arterial to mean alveolar gradients for CO₂ ($a\bar{A}P_{CO_2}$) in mmHg, intrapulmonary shunt (as % of total pulmonary blood flow) and alveolar dead space (as % of total alveolar ventilation) for different combinations of shunt and alveolar dead space

		ĀaP _{o₂} mmHg	aĀP _{CO2} mmHg	Shunt % total blood flow	Dead space % total ventilation
Α	Shunt only	48	2.3	30	0
В	Dead space only	13	9.2	0	30
С	Mixed: shunt = dead space	63	11.3	30	30
D	Mixed: shunt >> dead space	63	7.5	44	10
Е	Mixed: dead space >> shunt	26	7.5	5	23

Calculated from figure 3b in WAGNER et al. [3].

these complexities became manageable. The pioneers in this field, in the late 1960s, were KELMAN [6] and WEST [7].

Expired gas analysis

Measurements of inspired and expired P_{O_2} and P_{CO_2} and tidal volume need to be made, in a controlled way over 3–5 min, using a noseclip and mouthpiece. This type of monitoring is now routine in cardiopulmonary exercise testing. A steady state, as judged by a stable end-tidal P_{CO_2} , a constant respiratory rate and adequate tidal volume are needed for the calculation of inspired and expired ventilation, and oxygen consumption (from which cardiac output and P_{vO_2} are computed). During this monitoring period, radial artery blood is sampled over several breaths. Details can be found in the article by HARBUT *et al.* [1]. The calculation (and its justification) of mean alveolar tensions from the expired P_{O_2} and P_{CO_2} profiles is described in detail in WAGNER *et al.* [3].

Conclusion

WAGNER *et al.* [3] have shown, by their theoretical analysis and practical approach, that mean (or mixed) alveolar (\overline{A})–arterial P_{O_2} and P_{CO_2} gradients (and intrapulmonary shunt and alveolar dead space) can be measured with greater accuracy than with the classical ideal alveolar air approach [2], particularly in disease when substantial shunt and dead space co-exist (as they usually will). This is a big step forward in gas exchange pathophysiology. HARBUT *et al.* [1] have used this method and analysis to show that shunt and alveolar dead space, representing different pathological processes, may be present together in patients with COVID-19 lung disease. The time has come to extend this analysis to other pulmonary conditions.

Conflict of interest: None declared.

References

- 1 Harbut P, Prisk GK, Lindwall R, *et al.* Intrapulmonary shunt and alveolar dead space in a cohort of patients with acute COVID-19 pneumonitis and early recovery. *Eur Respir J* 2023; 61: 2201117.
- 2 Riley RL, Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. *J Appl Physiol* 1949; 1: 825–847.
- 3 Wagner PD, Malhotra A, Prisk GK. Using pulmonary gas exchange to estimate shunt and deadspace in lung disease: theoretical approach and practical basis. *J Appl Physiol (1985)* 2022; 132: 1104–1113.
- 4 Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. *J Appl Physiol* 1974; 36: 588–599.
- 5 Fenn WO, Rahn H, Otis AB. A theoretical study of the composition of the alveolar air at altitude. *Am J Physiol* 1946; 146: 637–653.
- 6 Kelman GR. Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol 1966; 21: 1375–1376.
- 7 West JB. Ventilation–perfusion inequality and overall gas exchange in computer models of the lung. *Respir Physiol* 1969; 7: 88–110.